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ABSTRACT: In the Different Models, Same Initial Conditions (DIMOSIC) project, forecasts from 
different global medium-range forecast models have been created based on the same initial condi-
tions. The dataset consists of 10-day deterministic forecasts from seven models and includes 122 
forecast dates spanning one calendar year. All forecasts are initialized from the same ECMWF 
operational analyses to minimize the differences due to initialization. The models are run at or near 
their respective operational resolutions to explore similarities and differences between operational 
global forecast models. The main aims of this study are 1) to evaluate the forecast skill and how it 
depends on model formulation, 2) to assess systematic differences and errors at short lead times, 
3) to compare multimodel ensemble spread to model uncertainty schemes, and 4) to identify models 
that generate similar solutions. Our results show that all models in this study are capable of producing 
high-quality forecasts given a high-quality analysis. But at the same time, we find a large variety in 
model biases, both in terms of temperature errors and precipitation. We are able to identify models 
whose forecasts are more similar to each other than they are to those of other systems, due to the 
use of similar model physics packages. However, in terms of multimodel ensemble spread, our results 
also demonstrate that forecast sensitivities to different model formulations still are substantial. We 
therefore believe that the diversity in model design that stems from parallel development efforts 
at global modeling centers around the world remains valuable for future progress in the numerical 
weather prediction community.
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G lobal medium-range numerical weather predictions (NWP) are generated daily by 
several modeling centers, each of which develops largely independent forecast systems 
(observation handling, data assimilation, and the forecast model; for acronyms 

of centers and models, see Table 1). However, a continuous exchange of knowledge via 
conferences, scientific publications, and staff movements results in NWP systems that share 
similar fundamental concepts, for example, in dynamical cores and physical parameterization 
schemes. From this the main question for the DIMOSIC (Different Models, Same Initial 
Conditions) project arises: are we approaching a point where all models yield forecasts that 
are statistically similar?

Errors in NWP forecasts originate from uncertainty in the initial conditions and imperfec-
tions in the models. To investigate local (in time and space) error growth due to model dif-
ferences, initial condition differences need to be minimized and short lead times need to be 
evaluated to minimize accumulated chaotic error growth [see Dalcher and Kalnay (1987) for 
a conceptual model about 
error growth]. One possible 
approach is to initialize dif-
ferent models from the same 
initial conditions, assuming 
that the effect of the initial 
shock from nonnative initial 
conditions is small. To un-
derstand biases in climate 
models, this approach has 
been adopted in the past by 
the Transpose-AMIP project, 
where climate models were 
initialized from the same 
analyses and evaluated on 
a medium-range forecast 
time scale (Williams et al. 
2013). In a collaboration 
between GFDL and ECMWF, 
the global FV3 model was 
initialized from both NCEP 
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Table 1. Acronyms for institutes and models.

Acronym Expansion

Arpege Action de Recherche Petite Echelle Grande Echelle

CMC Canadian Meteorological Centre

DWD Deutscher Wetterdienst

ECMWF European Centre for Medium-Range Weather Forecasts

FV3 Finite-Volume Cubed-Sphere Dynamical Core

GEM Global Environmental Multiscale Model

GFDL Geophysical Fluid Dynamics Laboratory

GFS Global Forecast System

GSM Global Spectrum Model

ICON Icosahedral Nonhydrostatic Model

IFS Integrated Forecasting System

JMA Japan Meteorological Agency

KMA Korea Meteorological Administration

NCEP National Centers for Environmental Prediction

NRL Naval Research Laboratory

SHiELD System for High-Resolution Prediction on Earth-to-Local Domains

UM Unified Model
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and ECMWF initial conditions. Valuable results emerged from this intercomparison, both 
in terms of midlatitude forecast errors (Magnusson et al. 2019) and tropical cyclone forecast 
errors (Chen et al. 2019).

The same approach has also been adopted in the Dynamics of the Progress in Earth and 
Planetary Science Open Access Atmospheric General Circulation Modeled On Nonhydrostatic  
Domains (DYAMOND) project (Stevens et al. 2019; Judt et al. 2021). In this project, the 
ECMWF global 9-km meteorological analysis of 1 August 2016 was used to initialize nine 
global storm-resolving models (GSRMs) with a grid spacing of 5 km or less. Then, determin-
istic 40-day integrations from each model were analyzed, with a focus on energy budgets, 
precipitation, and tropical cyclones. This project showed the utility of understanding inter-
model differences and assessing the sensitivity of results to a particular implementation. 
Therefore, following a complementary method to DYAMOND, one can use a set of models 
at a relatively lower resolution to perform multiple medium-range simulations and analyze 
the characteristics of these medium-range predictions. This idea promotes the form of the 
DIMOSIC project.

The main aims of DIMOSIC are the following:

• Identify and understand relationships between model formulation and forecast skill. 
By starting different models from the same initial conditions and comparing forecast 
skill for different regions, the strengths and weaknesses of individual models can be 
identified.

• Assess systematic differences and errors at short lead times. The DIMOSIC protocol elimi-
nates short-range biases that originate from the use of different data assimilation systems. 
Any rapid development of distinct biases is therefore an indication of systematic differences 
between the formulations of the forecast models.

• Compare multimodel ensemble spread to model uncertainty schemes. This may highlight 
areas where current model uncertainty schemes do not fully represent error sources related 
to model formulation.

• Identify models that generate similar solutions. This information will help forecasters and 
end users to appreciate the significance of differences between guidance from different 
models. It will also help developers to identify systematic errors associated with specific 
model components.

The institutes (models, key reference) represented in this report are DWD (ICON, https:// 
code.mpimet.mpg.de/projects/iconpublic), Météo-France (Arpege; Roehrig et al. 2020), ECMWF 
(IFS; ECMWF 2020), the Met Office (UM; Walters et al. 2019), Environment and Climate Change 
Canada (CMC-GEM; https://github.com/ECCC-ASTD-MRD/gem), GFDL (SHiELD; Harris et al. 2020), 
and JMA (JMA-GSM; JMA 2019).

Because most of the contributing modeling centers have experience with initializing 
their models with ECMWF operational analyses or reanalyses (ERA-Interim or ERA5), 
this became the choice for the common initial conditions. For each model, the same set  
of 10-day forecasts are initialized every third day for a 1-yr period (6 June 2018–4 June 2019). 
The model grid spacings are the same or similar to what is used operationally at each 
institute.

We begin this paper by summarizing the contributing models and the compilation of the 
dataset. This section also describes the ingestion of the ECMWF initial conditions in each 
model and any adjustments that were required. Results are then presented in the form of fore-
cast verification scores and mean errors (biases), augmented by an assessment of multimodel 
ensemble spread and similarities between models. The project outcomes and progress made 
toward achieving DIMOSIC objectives are discussed in the final section.
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Models and data
Model descriptions. All models that participate in the DIMOSIC project are global models used 
for medium-range weather forecasting. Table 2 provides a brief overview of the configurations 
of each model in terms of grid spacing, dynamical core, and selected physical parameteriza-
tions. The table also provides key references for each model that contain additional details 
about specific components. For the horizontal grid spacing, Arpege has a horizontally varying 
grid spacing with refinement to 5 km over Europe.

Although all models have grid spacings between 5 and 25 km, they are in different stages 
of implementing methods believed to be important for kilometer-scale forecasts. The UM, 
SHiELD, and ICON dynamical cores are nonhydrostatic, while others are hydrostatic. The 
SHiELD and ICON models have finite-volume dynamical cores. For the horizontal discretiza-
tion, IFS, Arpege, and JMA-GSM use spectral methods, while the other models use variants 
of a gridpoint model. Another important part for the dynamical core is the time stepping 
(Mengaldo et al. 2019), where the models with a finite-volume core use a combination of 
explicit and semi-implicit time stepping while the other models use semi-implicit or fully 
implicit time stepping.

For the large-scale precipitation and cloud processes, most models use a single-moment 
microphysics parameterization, but with a different number of categories for cloud condensate. 
For the convection parameterization, IFS, ICON, and Arpege (the version used in this study) 
use the Tiedtke–Bechtold convection scheme (Tiedtke 1993; Bechtold et al. 2008). It is worth 
noting that even if model components are built on the same original idea, the implementation 

Table 2. Model descriptions. FE = Finite element, FD = finite difference, FV = finite volume, H = hydrostatic, NH = nonhydrostatic, 
CLWC = cloud liquid water content, CIWC = cloud ice water content, CRWC = cloud rainwater content, CSWC = cloud snow water 
content, TKE = turbulent kinetic energy scheme, ED(MF) = eddy diffusivity (mass flux), RRTM = Rapid Radiative Transfer Model.

Model Institute Version Resolution
Dynamical 

core Convection

Cloud 
water 

content 
cat. Turbulence

Orographic 
drag Radiation

Key 
reference(s)

IFS ECMWF 47r1 9 km/137 
levels

Spectral/
FE/H

Tiedtke–
Bechtold

CLWC, CIWC, 
CRWC, 
CSWC

EDMF Lott–Miller RRTM 
(EcRad)

ECMWF 
(2020)

CMC-GEM CMC v5.0.2 15 km/80 
levels

Yin–Yang 
grid/FD/H

Kain and 
Fritsch (deep) 

+ Bechtold 
(shallow)

Single liquid 
ice

TKE Lott–Miller Correlated K Girard et al. 
(2014)

McTaggart-
Cowan et al. 

(2019)

ARPEGE Météo-
France

46T1 5–25 km/105 
levels

Spectral/
FE, H

Tiedtke–
Bechtold + 

shallow mass 
flux

CLWC, 
CIWC, 
CRWC, 
CSWC

TKE Lott–Miller RRTM Roehrig et al. 
(2020)

UM Met Office — 10 km/70 
levels

Regular 
lon–lat grid/

FD, NH

Gregory and 
Rowntree  
mass flux

Liquid and 
ice mixing 

ratio

First-order 
turbulence 

closure

Spectral 
subgrid

SOCRATES Walters et al. 
(2019)

SHIELD GFDL — 13 km/91 
levels

Cube-
sphere/FV, 

NH

Simplified 
Arakawa–
Schubert

CLWC, CIWC, 
CRWC, 
CSWC, 
graupel

Yonsei Uni. Lott–Miller 
and Kim–

Doyle

RRTM Harris et al. 
(2020)

ICON DWD 21 April 
2021

13 km/90 
levels

Icosaheder/
FV, NH

Tiedtke–
Bechtold

CLWC, CIWC, 
CRWC, 
CSWC

TKE Lott–Miller RRTM 
(EcRad)

DWD (2022)

JMA-GSM JMA GSM1705 20 km/100 
levels

Spectral/
FD, H

Simplified  
Arakawa–
Schubert

Cloud water 
content

Hybrid TKE 
and ED

Type A and B 
scheme

Two stream 
approx.

JMA (2019)
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can vary substantially. Bengtsson et al. (2019) indicated that the Tiedtke–Bechtold convec-
tion scheme needed significant retuning to work properly with the other model components 
such as the microphysics scheme in the FV3GFS model. The convection and microphysics 
schemes were revised in IFS model cycle 47r3 and included improvements to the interaction 
between the schemes (Bechtold et al. 2020). The impact of this upgrade is evaluated in this 
paper to give an example of an incremental change in one model.

The planetary boundary layer is represented in the Arpege, ICON, and CMC-GEM models 
by using different formulations of turbulent kinetic energy (TKE) closures, while JMA-GSM 
uses a hybrid eddy diffusivity–TKE scheme. Several models use the Lott and Miller (1997) 
orographic drag parameterization, one of several subgrid-scale orography schemes reviewed 
by van Niekerk et al. (2020). All models except Arpege include a parameterization scheme for 
nonorographic gravity wave drag.

For the sea surface temperature (SST) evolution, all but three (IFS, SHiELD, and CMC-GEM) 
models use persistent anomalies from the analysis. For the exceptions, IFS uses a partial 
coupling to the 3D ocean NEMO model (Mogensen et al. 2017), SHiELD is coupled with a 1D 
mixed layer ocean model (Pollard et al. 1973), and CMC-GEM uses the initializing analysis 
and a thermodynamic mixed layer ocean model (Zeng and Beljaars 2005).

Data processing and verification data. The forecast output was interpolated to a regular 0.25° 
grid at each contributing center followed by an interpolation to a common 0.5° grid using an 
average interpolation method. This step was necessary to standardize the final interpolation 
step as other modeling centers may have used different methods to produce the 0.25° grid.

In most of the results presented here, the forecasts are verified against multicenter analyses 
based on the mean of ECMWF, MetOffice, NCEP, CMC, KMA, and JMA analyses available in 
the The International Grand Global Ensemble (TIGGE) archive (Swinbank et al. 2016). The 
multianalysis ensemble spread from TIGGE was evaluated in, e.g., Bauer et al. (2016). Note 
that some analyses are missing in the TIGGE archive during the verification period from 
individual centers, and for three dates all centers are missing. For these dates the operational 
ECMWF analysis is used.

As the forecasts were evaluated on pressure levels, it was important to properly mask grid 
points on each level that fall below the model orography. This could either be done separately 
for each forecast step and model, or with a fixed mask. In this project we opted for a fixed 
mask. The mask is determined for each level by the following steps:

1) Determine the minimum value of the geopotential height over all models, dates, and lead 
times.

2) Interpolate the model orography from each model to 0.5° with a maximum interpolation 
method (the maximum value of the contributing grid points are used).

3) Determine the maximum orography among the contributing models and add 20% of the 
height to avoid near-surface effects.

For the precipitation verification, the NASA Global Precipitation Measurement (GPM)  
Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset is used (Hong et al. 2004). It is 
a high-frequency (half-hourly), high-resolution (0.1°) satellite observational dataset covering 
the global area between 60°S and 60°N. Pradhan et al. (2022) note that Asia (which we will 
highlight in the following sections) is the subject of the most IMERG evaluation studies on 
the continental and country scale. Given the tremendous uncertainty in global precipitation 
analyses, the results may be sensitive to the choice of validation dataset (Gehne et al. 2016), 
and further investigation using other high-resolution precipitation datasets [e.g., Multi-Source 
Weighted-Ensemble Precipitation (MSWEP); Beck et al. 2019] is warranted.
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Initial conditions. All models in the comparison are initialized from ECMWF operational 
analyses based on IFS model cycle 45r1 (ECMWF 2018). The analysis fields are produced 
from the (mainly) strong-constraint 4D-Var data assimilation (Rabier et al. 2000) with a 6-h 
assimilation window (±3 h around the initialization time), while the first-guess forecast is 
provided from an analysis based on a 12-h window. To provide background-error statistics, 
a 25-member ensemble of 4D-Var assimilations is run with a lower horizontal resolution 
(Bonavita et al. 2012).

The analysis has a 9-km horizontal grid spacing and 137 vertical levels. In this project the 
atmospheric variables were interpolated to a regular 0.1° grid and distributed to all participating 
institutes (DWD, Météo-France, and Met Office accessed the data directly from the ECMWF 
archive). The number of variables used from the ECMWF analyses varies among the institutes 
(Table 3). The SST and sea ice were used from the Operational Sea Surface Temperature and 
Sea Ice Analysis (OSTIA) analysis Good et al. (2020) for all models except SHiELD. For land 
(soil + snow) all institutes used data from their own analysis, except for DWD that used the 
ECMWF analysis. We recognize that there is a risk that the inconsistencies between the initial 
boundary conditions (e.g., orography and land surface initial conditions) and the atmospheric 
initial conditions could impact medium-range forecast skill, especially for surface related 
variables (Boisserie et al. 2016). However, the implementation of the different surface models 
made it too difficult to ingest the ECMWF surface analysis into each model.

A complication in this experimental setup is the potential initialization adjustment/shock 
from starting a model with initial conditions produced by a different model. The initial shock 
could arise from differences due to interpolation of the initial conditions, differences in the 
lower boundary conditions (orography and land initial conditions) between models, and 
different model microphysics. For the microphysics, some institutes used parts of the avail-
able cloud water variables from the ECMWF analysis, while other institutes started with zero 
cloud water (0 in Table 3). The initialization shock could potentially act in a similar way to 
initial perturbations between the different model forecasts (Judd et al. 2008). These could 
then grow with time if they project onto growing dynamical modes.

To illustrate the initialization adjustment/shock, Fig. 1 shows the mean precipitation  
averaged between 40°N and 40°S for 24-h sliding windows with increasing lead times for all 
models and the GPM precipitation product (Hong et al. 2004). This diagnostic of spinup/-down 
of precipitation serves as an indication of the initial shock in the models. For this measure, 
the largest shock is seen for CMC-GEM, which resulted in very low precipitation in the 
beginning of the forecast. To test the sensitivity to the initialization of humidity, an additional 
experiment was run with the humidity from the native CMC-GEM analysis (CMC-GEM-Q). This 
resulted in a shock in the 
other direction with too 
much precipitation in the 
beginning of the forecast. 
The plot also includes fore-
casts from the native (own) 
analysis for UM, JMA-GSM, 
and for SHiELD based on 
GFS initial conditions. For 
these datasets a spinup 
period is still present, but 
not as strong as starting 
from the ECMWF analyses.

The smallest magni-
tude shock is found for 

Table 3. Variables used from the ECMWF analysis for initializing each 
model. T = Temperature, U = zonal wind component, V = meridional 
wind component, Q = specific humidity, W = vertical velocity, CLWC =  
cloud liquid water content, CIWC = cloud ice water content, CRWC = 
cloud rainwater content, CSWC = cloud snow water content, CC = cloud 
fraction, PS = surface pressure.

Model 3D fields Microphysics 2D fields

CMC-GEM T, U, V, Q 0 PS, orography

ICON T, U, V, Q, W CLWC, CIWC PS, skin temperature,  
soil and snow parameters

SHiELD T, U, V, Q, W CLWC, CIWC,  
CRWC, CSWC

PS, orography

JMA-GSM T, U, V, Q 0 PS, orography

Arpege T, U, V, Q 0 PS

UM T, U, V, Q CLWC, CIWC, CC PS
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ECMWF (even if the used model 
version is a newer version of IFS 
than used for the initial conditions), 
followed by ICON. In general, the 
adjustment time scale is around 
3 days before the model reaches a 
relative equilibrium. But from this 
plot one can also notice that dif-
ferent models have different mean 
precipitation, something to be dis-
cussed more in the next section. 
The lead-time dependence of the  
500-hPa temperature bias and 
possible initial shocks will be also 
discussed in the next section.

Results
In this section we will present a  
selection of bias-corrected root-mean-
square error/difference (RMSE/D), 
forecast standard deviation (hereafter referred to as “forecast activity”), and mean error (bias) 
statistics. The bias-corrected RMSE is calculated by subtracting the lead-time-dependent 
mean error of the full sample from each forecast before calculating the RMSE. Note that the 
bias-corrected RMSE is equivalent to the standard deviation of forecast errors. The forecast 
activity measures the standard deviation of the forecast minus the daily climatology from the 
ERA-Interim, and is important to monitor as reduced activity can artificially decrease RMSE 
(see chapter 12.A in ECMWF 2022).

Lead-time evolution of RMSE and bias. For each model we have calculated RMSE, bias and 
forecast activity for a set of parameters and levels. Figure 2 shows an example for the results 
for 500-hPa temperature (T500) over the Northern Hemisphere (N. Hemisphere, 20°–90°N) and 
the tropics (20°N–20°S). The results for the Southern Hemisphere (S. Hemisphere, 20°–90°S) 
will be discussed but are not shown. The forecasts are verified against the multicenter analysis 
(described above). The figures include the bias (Figs. 2a,b), the bias-corrected RMSE (Figs. 2c,d; 
thick lines), forecast activity (Figs. 2c,d; thin lines), and the difference in the bias-corrected 
RMSE between each model and the IFS-47r1 forecasts (Figs. 2e,f). In the difference plot, the 
results that are statistically different to IFS-47r1 (at the 95% level using the Student’s t test) 
are marked with a dot. The scores have been calculated with 12-hourly time increments.

In these figures the verification for the subsequent IFS model (IFS-47r3, operational in 
autumn 2021) is included to give an example of the incremental change obtained for an upgrade 
of one model. We have also included the forecasts from JMA (up to day 6; JMA-ownIC) and 
the UM (UM-ownIC) initialized from their own analyses, and the SHiELD model initialized 
with the NCEP/GFS initial conditions (SHiELD-gfsIC), to illustrate the impact of the choice of 
initial conditions. Note that the NCEP/GFS initial conditions are from before the operational 
implementation of the FV3 dynamical core (same core as SHiELD) in GFS on 12 June 2019.

For all forecasts initialized from the ECMWF analysis, the bias starts at values close to 
each other. The error at step 0 for the ECMWF forecast indicates the difference (both in mean 
and RMSE) between the ECMWF analysis and the multicenter analysis. The initialization 
from the ECMWF analysis (based on a previous model version) may give the IFS forecasts an 
advantage due to a smaller initialization shock.

Fig. 1. 24-h mean precipitation for running-mean  
windows for 40°N–40°S, as a function of lead time (h).
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For the bias, the models start to deviate over the first 12-h with UM and CMC quickly develop-
ing a negative bias. This could be a result of initialization shock when using an analysis from a 
different system, or a fast-developing bias in these models. The UM subsequently “warms up” 
after the initialization, but stays colder than the UM forecasts initialized from its own analysis for 
the full forecast range. For the N. Hemisphere and S. Hemisphere (not shown), Arpege, SHiELD, 
and IFS-47r3 develop a positive bias with increasing lead time. The warming in IFS-47r3 is not 
present for IFS-47r1, which has a neutral temperature bias for the N. Hemisphere. Conversely, 
there is a cold bias in the tropics for IFS-47r1, which is reduced in IFS-47r3. The vertical structure 
of these biases is discussed later in this section. For the tropics we find a rapidly developing 
positive bias for Arpege and JMA-GSM; however, JMA-GSM later “cools down.” For longer lead 
times, ICON drifts toward warmer conditions in the tropics at 500 hPa.

For the lead-time-dependent RMSE, as seen in Fig. 2 for T500 over N. Hemisphere, the 
errors grow with increasing lead time (as expected) and do not reach saturation by day 10. From 
day 1 to day 3 the IFS forecast for T500 in the N. Hemisphere is significantly better than all 
other models, while ICON obtains similar RMSE for longer lead times. For the RMSE in both 
the N. Hemisphere and tropics, we find the largest errors for the three forecasts with other 
initial conditions than ECMWF (JMA and UM with own analysis and SHiELD initialized from 
NCEP/GFS analyses). Conversely, when these models are initialized from ECMWF analyses, 
the errors are much lower. The relatively small difference between the models initialized from 
ECMWF analysis, compared to the three forecasts with different analyses, we see as a sign 
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statistically significant results above the 95% level are marked with dots. (left) N. Hemisphere and (right) tropics.
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that all models are capable of producing high-quality forecasts and that the initial conditions 
play a significant role.

For the S. Hemisphere (not shown) the results are similar to the N. Hemisphere but with a 
larger difference between SHiELD initialized from NCEP/GFS analyses and all models initial-
ized from ECMWF analyses. For the S. Hemisphere the lowest RMSE is found for ICON, but 
the result only passes the 95% significance around day 4.

For the T500 RMSE in the tropics, we find the lowest values for JMA-GSM and IFS-47r3. 
However, for JMA-GSM we simultaneously find a too low forecast activity that could at least 
partly explain the lower RMSE. The decrease in activity is found to happen over the first 2 
forecast days and later converges to JMA-ownIC. A similar decrease in forecast activity is also 
found for CMC-GEM that could contribute to the relatively low RMSE. The RMSEs from ICON 
and Arpege are comparable with those of IFS-47r1. One can note that these three models 
share the same convection scheme.

Figure 3 summarizes the 3-day normalized difference in bias-corrected RMSE to the  
IFS-47r1 forecast for the N. Hemisphere, S. Hemisphere, and the tropics regions for a range 
of parameters. All nonsignificant (using 95% significance level from the Student’s t test) 
differences are masked white in this table. Except for the T850, we can see the improve-
ment with the IFS-47r3 model version compared to IFS-47r1. Among the models, ICON has 
the most similar scores to the IFS for most of the parameters and regions, and is better than 
both versions of IFS for T850 and Z500 in the S. Hemisphere. We can also see that JMA-GSM 
has lower RMSEs than all other models for T200 and U200 in the tropics. This could be an 
artifact of the reduced anomalies (see Fig. 2 for T500) in the JMA-GSM forecasts that can 
favor the RMSE metric.

Temperature bias in the troposphere. Figure 4 shows the zonal mean of the day 3 forecast 
temperature bias, based on data on 850-, 700-, 500-, 300-, and 200-hPa levels. The first 
pattern to notice is that all models have a cold bias in the upper troposphere at all latitudes, 
which is most pronounced outside the tropics. This could be a result of the ECMWF initial 
conditions being too moist in the lower stratosphere, which causes strong radiative cooling 
(Shepherd et al. 2018).

Fig. 3. Scorecard of normalized, bias-corrected RMSE difference to IFS, step 72 h, for different 
variables, levels, and regions.
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Fig. 4. Vertical cross section of zonal mean temperature bias, step 72 h, verified against TIGGE multianalysis.
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All model simulations have a warm bias at high latitudes in the middle troposphere. For 
the tropics, the vertical structure of the bias differs a lot between the models, where UM is 
the coldest.

Comparing the bias pattern at 850 hPa (Fig. 5), we see large regional differences. SHiELD 
simulations have a cold bias over the northern Atlantic and northern Pacific while ICON is 
too cold over the landmasses. JMA-GSM has a cold bias over the lower latitude oceans (south 
of 30°N) and UM has a mix of cold and warm regional biases. Arpege has the strongest warm 
bias over oceans outside the tropics.

Over the subtropical regions, which are dominated by strong inversions around the  
850-hPa level, the IFS, CMC-GEM, and SHiELD have a warm bias, whereas the UM is too cold, 
and ICON and Arpege show small biases. Torn and Davis (2012) compared the Tiedke (used 
here in IFS, ICON, Arpege) with the Kain–Fritsch (used here in CMC-GEM) convection scheme 
over tropical oceans and found the former performs better. Even if our results agree, one can 
note the large impact by the recent changes in existing schemes in IFS-47r3.

For the lower troposphere over the S. Hemisphere, JMA-GSM, UM, and SHiELD have the 
strongest cold biases. Again it is the lower latitudes that contribute most to the bias in 
JMA-GSM, while UM and SHiELD have stronger biases over the storm track region between 
40° and 60°S.

Precipitation bias over Southeast Asia. Southeast Asia provides a complex region in terms 
of precipitation with the mixture of land and warm sea around the Maritime Continent, 
monsoon-driven variability over the continental landmasses, the mei-yu front over China, 
and finally orographic enhancement upwind of the Himalayas. We therefore chose to exem-
plify the precipitation biases in this region (Fig. 6). Here, the bias is averaged over the full  
10-day period in each forecast and verified against the GPM precipitation product (Hong 
et al. 2004).

The most common bias among the models is the dry bias over the eastern Indian Ocean 
off the coast of Sumatra, which is present in all models but ICON (wet bias). The strongest 
bias is found in SHiELD and Arpege, where the dry bias extends farther west over the Indian 
Ocean. The underestimation is related to a lack of 10-day forecasts with high precipitation 
rates (not shown).

For ICON we find a strong contrast in the precipitation bias between the land and ocean. 
Precipitation amounts are too high over the sea and too low over the land compared to GPM. 
Several of the other models also simulate a wet bias over sea around the Maritime Continent. 
This difference between ICON and IFS warrants further analysis as they both use the same 
convection scheme.

Another common bias among the models is excess precipitation over southeastern China, 
which appears in all models except ICON. This bias is discussed in Lavers et al. (2021) for 
IFS, where the forecasts are compared to rain gauge observations. We found too many 10-day 
forecasts with high precipitation rates in the region (not shown). The UM and IFS also simulate 
excessive precipitation along the southeastern edge of the Himalaya Mountains.

Multimodel ensemble spread.  Historically, forecasters have used deterministic forecasts 
from multiple NWP centers to either subjectively assess the forecast uncertainty or create 
a multimodel ensemble (Ziehmann 2000). The uncertainty in such an ensemble would be 
a result of the differences between analyses from each NWP center together with the differ-
ence due to model formulations. Though none of these components have been developed to 
represent the true uncertainty, the methodology is popular.

In operational ensemble forecasting systems from a single NWP center, dedicated schemes 
are used to account for the analysis and model uncertainties. For the latter, one commonly 
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used scheme is the stochastically perturbed physics tendencies (SPPT) scheme (Buizza et al. 
1999; Leutbecher et al. 2017). The SPPT method perturbs the total tendency of the physical 
parameterization schemes and aims to only target the random part of the model error. Another 
example, closer to the multimodel approach, is to use different combinations of physical  

Fig. 5. 850-hPa temperature bias, step 72 h, verified against TIGGE multianalysis. Hatches mark the orography mask for 850 hPa.
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parameterization schemes such as in Descamps et al. (2015). For an overview of other schemes, 
see Leutbecher et al. (2017).

In this section we evaluate the multimodel ensemble standard deviation (hereafter 
referred to as ensemble spread) based on seven models in DIMOSIC (IFS-47r3 excluded). 
As all models are initialized from the same initial conditions, we expect the forecast dif-
ferences to arise mainly from differences in the model, bearing in mind that the initial 
adjustment can also create growing perturbations. The mean differences between the 
models are removed before computing the multimodel ensemble spread. This partly  
addresses the effect of the initial adjustment. The multimodel ensemble is compared 
with the ensemble spread from a 10-member ECMWF ensemble with the SPPT scheme 
but without initial perturbations.

In Fig. 7 we compare the T500 ensemble spread for the operational ECMWF ensemble, the 
DIMOSIC multimodel ensemble, and a 10-member ECMWF ensemble with the SPPT scheme 
but without initial perturbations. The ensemble spread has been scaled to compensate for 
the finite ensemble size (Leutbecher 2009). The plot also includes the ensemble-mean RMSE 
for the ECMWF ensemble, verified against the ECMWF analysis. As the DIMOSIC ensemble 
and the SPPT ensemble excludes initial uncertainties, we do not expect these to simulate the 
full forecast uncertainty.

For the N. Hemisphere, the ECMWF ensemble is reliable as the ensemble spread matches 
closely with the ensemble-mean error (Leutbecher and Palmer 2008), while the ensemble 
spread is less for the two other ensembles as expected. The ensemble spread from the DIMOSIC 
ensemble grows rapidly during the first 24 h, which could be due to fast adjustments in each 
model and/or due to fast-growing uncertainties on the convective scale, e.g., discussed in 
Zhang et al. (2019). In 3-day forecasts the spread is slightly higher in the DIMOSIC ensemble 
compared to the SPPT ensemble. Inspecting maps of the spread for this lead time (Fig. 8) one 
finds that such a difference is present in the Arctic and over the landmasses, while in the 
storm tracks the spread is similar in the two ensembles. In the tropics, the ECMWF ensemble 

Fig. 6. (top left) Mean precipitation from GPM and (remaining panels) precipitation bias for each model averaged over 
10-day forecasts against GPM.
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spread is less than the ensemble-mean RMSE for T500. However, here the ensemble-mean 
RMSE has not been bias corrected. Furthermore, it is important to take analysis uncertainty 
into account when judging ensemble reliability (see Lang et al. (2021) for a discussion of 
ensemble verification sensitivities). Comparing the DIMOSIC ensemble with the SPPT  
ensemble we find a larger spread for the SPPT ensemble at 3-day lead time. Inspecting 
Fig. 8, we find the main difference over the ITCZ, where we expect strong model tendencies 
to be perturbed by the SPPT scheme.

In this section we have given examples of diagnostics of the ensemble spread in the  
DIMOSIC multimodel ensemble and how it can be compared to a dedicated model uncertainty 
scheme. Overall, the multimodel ensemble spread is similar to the SPPT ensemble, which is 
an interesting finding as the multimodel spread is not specifically targeted to represent model 
uncertainty. Future work will include a more comprehensive comparison of the multimodel 
ensemble and dedicated model uncertainty schemes.
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Forecast differences between models.  In this sec-
tion we explore if some models produce forecasts that 
are more similar to each other. This is done by calculat-
ing the root-mean-square difference (RMSD) between 
pairs of models after applying a bias correction (same 
as used above), for specific regions. We also calculate 
the RMSE (RMSD to the multianalysis), with the same 
procedure for each model.

Table 4 shows RMSD for each model averaged over 
all pairs with other models (excluding IFS-47r3 and 
the multianalysis), for 3-day forecasts and averaged 
over the full globe. For all three temperature levels 
the lowest average RMSD is found for pairs involving IFS. The largest difference is found for 
CMC-GEM on 850 hPa and for SHiELD for 500 and 200 hPa, indicating that these two models 
are most different relative to the rest of the models.

Figure 9 shows the RMSD between pairs of models for T500 at day 3. In the first column/
row, the RMSD to the verifying analysis (error) is provided. Above the diagonal presents the 
results for N. Hemisphere and below for the tropics. The figures also include the result for the 
IFS-47r3 to show the difference obtained from two versions of the same model.

The models that are closest to each other in the N. Hemisphere are IFS and ICON, which 
are also the models that share several parameterization schemes (see Table 2) and have the 
lowest RMSE found in Fig. 2. But even if the models are close, the RMSD is much higher than 
between the two IFS versions. For the N. Hemisphere, the UM is also relatively close to both 
IFS and ICON.

For T500 in the tropics, one can first note that the bias-corrected error is similar or sometimes 
lower than the differences between the models. This result could be explained by the smooth-
ing of the verifying analysis by using a multianalysis average. For the model differences, 

Table 4. Average RMSD to the other 
models at step 72 h, averaged over the 
full globe.

Model T850 T500 T200

CMC-GEM 1.06 0.78 0.87

ICON 0.94 0.75 0.85

IFS 0.93 0.72 0.82

SHiELD 1.05 0.83 0.92

JMA-GSM 0.99 0.78 0.87

Arpege 1.00 0.80 0.87

UM 1.01 0.77 0.88

Fig. 9. Model pair RMS differences for T500, step 72 for N. Hemisphere (top-right triangle) and 
tropics (bottom-left triangle).
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ICON, IFS, and Arpege are the models closest to each other. These three models use a similar 
convection parameterization (based on the Tiedtke–Bechtold scheme), which could explain  
the similarities.

Discussion and conclusions
In this paper we have presented examples of results from the model intercomparison project 
DIMOSIC, where different global models have been run from the same initial conditions. We 
have presented results for the RMSE of the forecasts, model biases and standard deviation of 
a multimodel ensemble, and differences between pairs of models.

The initial conditions came from the ECMWF operational data assimilation. The choice 
was based on most of the global modeling centers having some experience from initializing 
from ECMWF operational or reanalyses (e.g., ERA5). However, some models experienced a 
large initialization shock in terms of average precipitation, something that is to be investi-
gated further.

For the quality of the forecasts, for T500 over the N. Hemisphere, all models initialized 
with ECMWF analysis produced forecasts with RMSE much more similar to each other than 
forecasts initialized from their own analyses. It shows that all models in this study are 
capable of producing high-quality forecasts given a high-quality analysis, and that the initial 
shock seems to not cause a significant harm to the forecast quality. This result is in line with  
Magnusson et al. (2019), where a similar improvement was seen for the GFDL/FVGFS model 
(an earlier version of the SHiELD model), by using the ECMWF analyses.

Among the models the IFS showed the lowest RMSE for most parameters and regions. 
The result could be partly because we expected the lowest initialization shock from IFS. The 
second-best-performing model was for most parameters ICON, and that model had the lowest 
RMSE for Z500 in the medium-range over the S. Hemisphere.

For the difference in model biases, we found a large variety, both in terms of temperature 
errors and precipitation. The DIMOSIC dataset provides a convenient way to investigate 
particular biases with the effect of different mean states of the initial conditions removed. 
Except for the examples discussed in this article, the DIMOSIC dataset has for example 
been used at ECMWF to understand biases in 700-hPa temperature during boreal summer  
(Magnusson et al. 2022).

A large diversity between forecasts was found when we compared the RMSD between 
the models, much higher than between two versions of IFS. ICON and IFS came out as the 
most similar in terms of RMSD between the models. This is not a surprise as the ICON model 
shares parts of its physical parameterizations with IFS. At the same time, the pair of ICON 
and SHiELD showed relatively large RMSD. However, it is difficult to point out a single model 
component that has the strongest impact on the forecast differences. One has to bear in mind 
that interaction between different model components and configurations of each component 
play a significant role as well. Nevertheless, the information of regional differences in forecast 
skill and biases will give guidance toward the responsible model process.

For the multimodel ensemble spread, we showed examples of the horizontal distribution of 
the uncertainty and compared the results with an ensemble using stochastically perturbed 
parameterization tendencies (SPPT; Leutbecher et al. 2017). The two different approaches to 
capture model uncertainty showed similarities in terms of average ensemble spread.

In the future we plan to investigate the flow dependency of the model uncertainty and 
differences between model formulations, for example, by investigating the relation to 
warm conveyor belts as discussed in Rodwell and Wernli (2022, manuscript submitted to  
Wea. Climate Dyn.). To facilitate such a study, we plan to make use of the Eulerian detection 
of warm conveyor belts (Quinting and Grams 2022).
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The DIMOSIC project has provided a benchmark dataset that has already helped the different 
NWP centers with model development. For example, it has been greatly beneficial during the 
development of the Navy Environmental Prediction System Utilizing a Nonhydrostatic Engine 
(NEPTUNE) global model at NRL to identify systematic biases and also contributed to the identi-
fication of errors in other models. The dataset has also been used at KMA to benchmark the newly 
developed Korean Integrated Model (KIM).

In this article we have focused on the forecasts of field variables (temperature, wind, geopo-
tential, and precipitation). Ongoing work in the project will evaluate tropical and extratropical 
cyclones in the different forecasts and the results will be presented separately. In this article 
we have based all results on evaluation spanning over a full calendar year, with forecasts 
initialized every third day. There is a scope to evaluate the different seasons separately.

In summary, all contributing models produce forecasts with high skill when initialized from 
the ECMWF initial conditions, compared to the forecast initialized from other analyses. In a deter-
ministic sense this suggests that the initial conditions are a stronger factor to create the diversity 
in forecast skill between NWP centers than the model formulations. However, the forecast dif-
ference is still large between the models, as well as the multimodel ensemble spread. This leads 
us to the conclusion that the parallel developments at different NWP centers provide diversity 
among models. This will in the long term hopefully enhance overall progress in the field of NWP.

For the future, DIMOSIC provides a framework for comparisons of global models that gives 
model developers an additional tool to use to put their results in perspective to other models 
and also gives further insights about the diversity of the existing global models for forecasters 
and end users. With new model developments, new runs with the protocol will be evaluated. 
The DIMOSIC dataset will be available for the research community for further explorations.
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